

# **Thesis Defense**

# From Recognition to Prediction: Analysis of Human Action and Trajectory Prediction in Video



Junwei Liang junweil@cs.cmu.edu



Carnegie Mellon University Language Technologies Institute

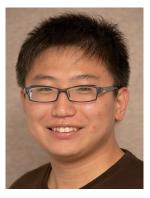
# **Thesis Committee**

- Prof. Alexander Hauptmann (Chair)
- Prof. Alan W Black
- Prof. Kris Kitani
- Dr. Lu Jiang (Google Research)











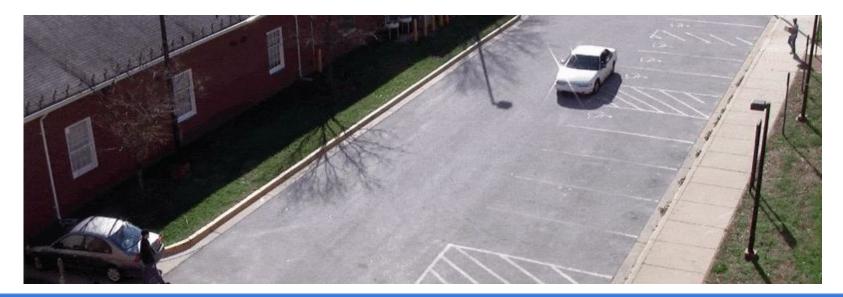


# Some notes for the audience

- Please mute your mic; you can turn on video if you'd like
- Please ask only clarification questions during the presentation: unmute and ask or post them on chat

### We Predict the Future Trajectory of Pedestrians

- Models observe 3~5 seconds
- Predict future 5~12 seconds



From Recognition to Prediction: Analysis of Human Action and Trajectory Prediction in Video

# We Predict the Future Trajectory of Pedestrians

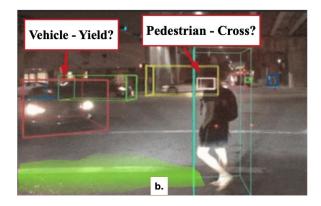
- Models observe 3~5 seconds
- Predict future 5~12 seconds
  - Human intentions (future actions) are predicted as well



From Recognition to Prediction: Analysis of Human Action and Trajectory Prediction in Video

# Why Pedestrian Trajectory Prediction?

- Important in many real-world applications
  - Self-driving cars
  - Socially-aware robots
  - Advanced public safety monitoring crowd dynamics estimation

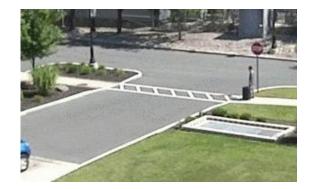




#### **Research Challenges**

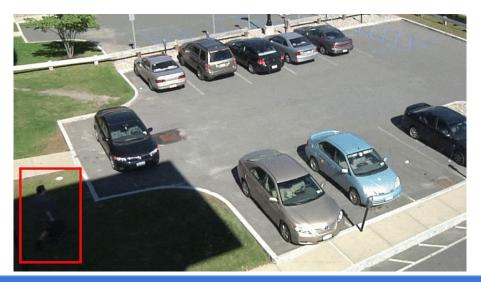
- Difficulties for trajectory prediction
  - The scene constraints are complex and they are changing dynamically
    - Static scene constraints like sidewalk, crosswalk
    - Traffic actors like vehicles





# **Research Challenges**

- Difficulties for trajectory prediction
  - The future is uncertain
  - Training data is limited for rare scenarios



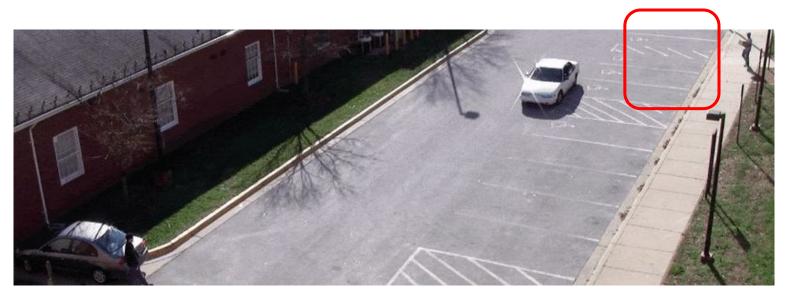
From Recognition to Prediction: Analysis of Human Action and Trajectory Prediction in Video

### **Thesis Goal and Focus**

- Goal
  - To build a robust pedestrian trajectory prediction system by jointly analyzing human actions and scene semantics.
- Our focus
  - P1. Action Analysis
  - P2. Trajectory Prediction with Scene Semantics
  - P3. Analysis of Actions and Trajectory Prediction

# Why Action Analysis?

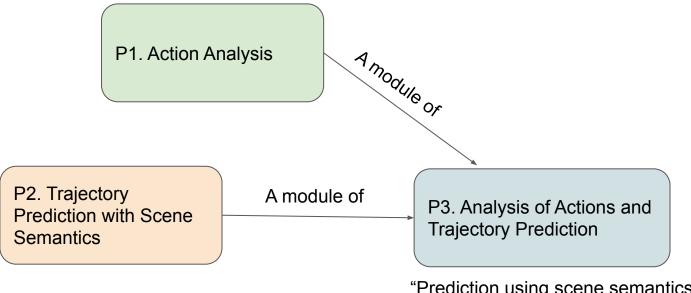
To better predict person's intent, models should detect subtle actions during observation.



See in the red box where the target person performs the action "wave hand".

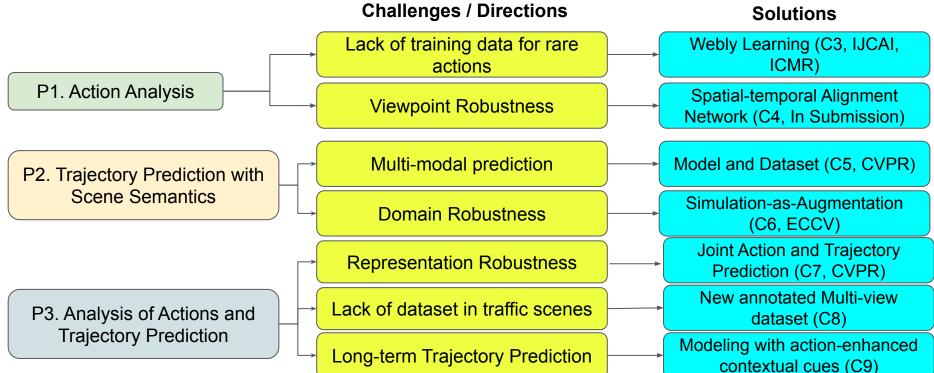
### Tasks and Their Relation

• Given a set of videos:



"Prediction using scene semantics and action representation"

# Thesis Breakdown



# **Thesis Organization**

.

| P1. Action Analysis                                 | P2. Trajectory Prediction with Scene Semantics     | P3. Analysis of Actions and<br>Trajectory Prediction                                            |  |  |
|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| Efficient Object Detection and Tracking (C2)        | Multi-modal Future Trajectory<br>Prediction (C5)   | Joint Action and Trajectory<br>Prediction (C7)                                                  |  |  |
| Weakly-supervised Learning (C3)                     |                                                    |                                                                                                 |  |  |
| Viewpoint-Invariant<br>Representation Learning (C4) | Simulation-as-Augmentation<br>Robust Learning (C6) | Long-term Trajectory Prediction<br>Using Scene Semantics and Action<br>Representation (C8 & C9) |  |  |

L

# Focuses of This Presentation

| P1. Action Analysis                                                                | P2. Trajectory Prediction with Scene Semantics     | P3. Analysis of Actions and<br>Trajectory Prediction                                            |
|------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Efficient Object Detection and<br>Tracking (C2)<br>Weakly-supervised Learning (C3) | Multi-modal Future Trajectory<br>Prediction (C5)   | Joint Action and Trajectory<br>Prediction (C7)                                                  |
| Viewpoint-Invariant<br>Representation Learning (C4)                                | Simulation-as-Augmentation<br>Robust Learning (C6) | Long-term Trajectory Prediction<br>Using Scene Semantics and<br>Action Representation (C8 & C9) |

Т

### Roadmap

- P1. Action Analysis
- P2. Trajectory Prediction with Scene Semantics
- P3. Analysis of Actions and Trajectory Prediction
- Vision and Future Directions
- Conclusions

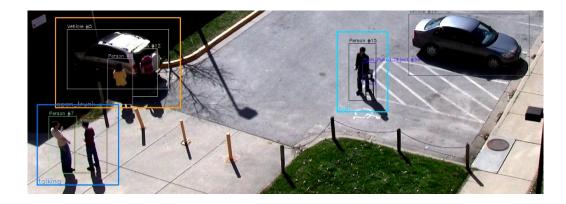
### Roadmap

#### • P1. Action Analysis

- C2. Efficient Object Detection and Tracking
- C3. Weakly-Supervised Action Event Recognition
- C4. Viewpoint Invariant Representation Learning
- P2. Trajectory Prediction with Scene Semantics
- P3. Analysis of Actions and Trajectory Prediction
- Vision and Future Directions
- Conclusions

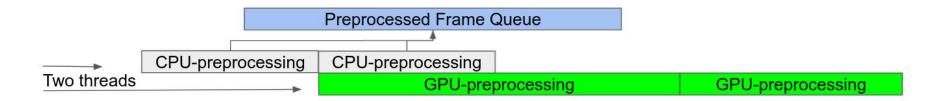
# C2. Efficient Object Detection and Tracking in Video

- In this chapter, our goal is to build an efficient object detection and tracking framework for extended videos
  - This usually called the "Perception" system in Self-driving systems
  - Not to beat SOTA
  - But to establish a flexible framework for any new object detection models



# C2. Efficient Object Detection and Tracking in Video

- Contributions
  - Optimized parallel processing using Tensorflow
    - More than 70% faster than official code
    - This system is part of the system that won the Activities in Extended Videos Prize Challenge (ActEV) in 2019
    - Github got 240+ stars and 80+ forks



# C2. Efficient Object Detection and Tracking in Video

• Visualization - Outdoor video with small person



P1. Action Analysis - C2. Efficient Object Detection and Tracking

### Roadmap

#### • P1. Action Analysis

- C2. Efficient Object Detection and Tracking
- C3. Weakly-Supervised Action Event Recognition
- C4. Viewpoint Invariant Representation Learning
- P2. Trajectory Prediction with Scene Semantics
- P3. Analysis of Actions and Trajectory Prediction
- Vision and Future Directions
- Conclusions

# C3. Weakly-Supervised Action Event Recognition

- Motivation
  - Since human actions are diverse and combination of atomic actions can lead to an exponential amount of action classes, manually-annotated training data is often insufficient
  - Not enough supervised data for long-tail actions
  - $\circ$   $\,$   $\,$  To mitigate that, we propose to
    - Leveraging webly-labeled data
    - Utilizing multi-modal prior knowledge



"Walking with dog" video example

# C3. Weakly-Supervised Action Event Recognition

- Contributions
  - We are one of the early works that study how we could better utilize weakly-supervised video data from the Internet
  - Our algorithm is able to outperform supervised training on manually-labeled data given enough noisy web data
  - Our algorithm has won several TRECVID challenges on Ad-hoc Video Search

### Roadmap

#### • P1. Action Analysis

- C2. Efficient Object Detection and Tracking
- C3. Weakly-Supervised Action Event Recognition
- C4. Viewpoint Invariant Representation Learning
- P2. Trajectory Prediction with Scene Semantics
- P3. Analysis of Actions and Trajectory Prediction
- Vision and Future Directions
- Conclusions

#### Why do we need viewpoint invariant models?

- Action representation should be viewpoint invariant
- Videos have camera motion and cut scene changes
  - Traditional convolution networks are not designed for viewpoint changes



Video from AVA dataset



#### Multi-view dataset

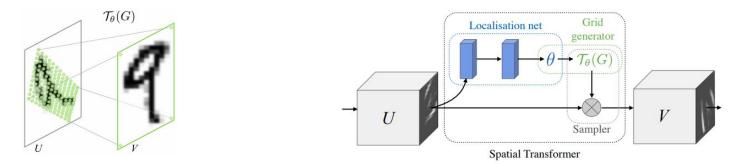
### **Previous Work**

- Action recognition models representation learning
  - Inception-3D (CVPR'17)
  - S3D (ECCV'18)
  - Non-local neural network (CVPR'18)
  - SlowFast Networks (ICCV'19)
- Viewpoint invariant models mostly for images
  - Spatial Transformer Networks (NeurIPS'15)
  - Dynamic Routing Between Capsules (NeurIPS'17)
  - VideoCapsuleNet (NeurIPS'18)
  - Stacked Capsule Autoencoder (NeurIPS'19)

# Spatial Transformer Networks (NeurIPS'15)

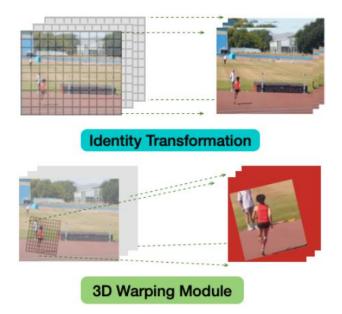
- Given spatial input, rearrange and get output
- A localization net to output affine transformation matrix (6 DoF) based on the input

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \mathcal{T}_{\theta}(G_i) = \mathbf{A}_{\theta} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix} = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$



Proposed: Spatial-Temporal Alignment Network for Action

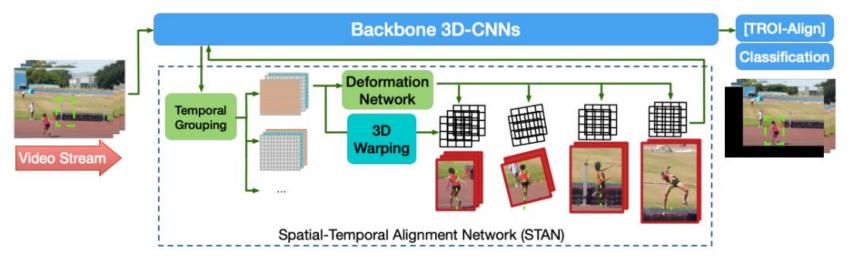
Recognition We propose to do so for 3D video inputs



# Spatial-Temporal Alignment Network for Action

### Recognition cal Details

- The deformation network takes feature maps and outputs transformation matrix
- Temporal grouping: different temporal slices of the feature map undergo different transformations



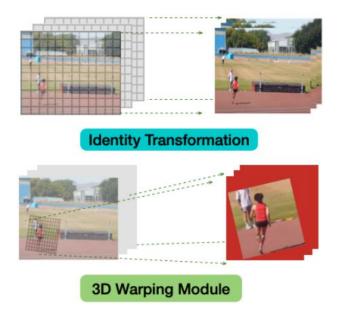
# Technical Details: Temporal Grouping

- We group video frames temporally to compute the transformation matrix
- Intuition: actions have sub-actions that would need different level of temporal scaling for better recognition



# **Transformation Visualization**

- The computed transformation matrix is used to warp feature maps
  - Typical transformations include rotation, scaling and translation



# Spatial-Temporal Alignment Network for Action

# Recognition Design

- Baselines
  - ResNet3D
  - SlowFast (ICCV'19)
- Datasets
  - Common benchmark
    - Kinetics-400
    - AVA
    - AVA-Kinetics
    - Charades
  - Multi-viewpoint dataset
    - Charades-Ego
    - MEVA

# **Experiments on Common Benchmark**

- Kinetics-400
  - We re-implemented SlowFast and ResNet3D using Tensorflow
  - 3x10 clips inference

| Models                    | top-1 | top-5 | GFLOPs |                       |
|---------------------------|-------|-------|--------|-----------------------|
| I3D [22]                  | 0.711 | 0.893 | -      |                       |
| R(2+1)D [44]              | 0.720 | 0.900 | -      |                       |
| DynamoNet (32 frames) [7] | 0.714 | 0.900 | -      | 1.5% absolute         |
| NL-R50 (32 frames) [49]   | 0.749 | 0.916 |        | improvement with only |
| ResNet3D (8x8)            | 0.735 | 0.908 | 109.2  | 2% more computation   |
| ResNet3D + STAN           | 0.751 | 0.916 | 113.2  |                       |
| SlowFast [9] (32x2)*      | 0.759 | 0.920 | 131.7  |                       |
| SlowFast + STAN           | 0.774 | 0.931 | 134.5  |                       |

#### **Experiments on Common Benchmark**

• AVA and Charades

| Models              | mAP   | GFLOPs | MParams |
|---------------------|-------|--------|---------|
| ResNet3D (8x8)      | 0.234 | 208.0  | 31.75   |
| ResNet3D + STAN     | 0.247 | 216.6  | 32.02   |
| SlowFast [9] (32x2) | 0.252 | 242.6  | 33.77   |
| SlowFast + STAN     | 0.268 | 247.4  | 33.96   |

Models mAP GFLOPs **MParams** ResNet3D (16x8) 0.354 218.432.40 ResNet3D + STAN0.377 226.4 32.47 0.386 131.7 34.51 SlowFast [9] (32x4) SlowFast + STAN 0.406 134.5 34.53

AVA Dataset

Charades Dataset

# **Experiments on Common Benchmark**

- Ablation Experiments on AVA dataset
  - Temporal grouping
  - Domain transfer ability
    - Pretrain on K400 and fix

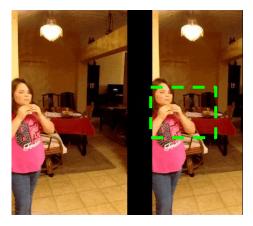
transformation network

|                              | Diff         | mAP   | GFLOPs |
|------------------------------|--------------|-------|--------|
| SlowFast                     | 3 <b>-</b> 0 | 0.252 | 242.55 |
| + STAN                       | +1.6%        | 0.268 | 247.40 |
| + STAN (no tg)               | +0.8%        | 0.260 | 247.40 |
| + STAN (tg=#frames)          | -            | 0.254 | 246.16 |
| + STAN (fixed $W_{\theta}$ ) | +1.2%        | 0.264 | 247.40 |

# **Qualitative Analysis**

#### • Visualizing transformation

- Left is original frames. Right is transformed frames
- The transformation serves as a camera stabilization effect





Holding a laptop

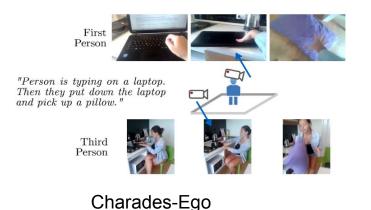
Eating a sandwich

\*32x4 test clips with temporal group=2, each group is about 2 seconds

P1. Action Analysis - C4. Viewpoint Invariant Representation Learning

# Experiments on Multi-viewpoint Dataset

- Charades-Ego and MEVA
  - 3x10 clips inference for each sample
  - MEVA evaluation set: total 7082 activity instances of 35 action classes (from 257 videos)







## Experiments on Multi-viewpoint Dataset

- Charades-Ego and MEVA
  - Multiple-viewpoint for the same action samples

| Models                                                        | 1st-person     | 3rd-person                                                   | Mode  | ls              | mAP   |
|---------------------------------------------------------------|----------------|--------------------------------------------------------------|-------|-----------------|-------|
| Baseline v1.0 [36]                                            | 0.282          | 0.232                                                        | ResN  | et3D (16x8)     | 0.455 |
| ResNet3D (16x8)<br>ResNet3D + STAN                            | 0.298<br>0.318 | 0.361<br><b>0.366</b>                                        |       | et3D + STAN     | 0.497 |
| $\frac{\text{Reside(3D + 31AN})}{\text{SlowFast [9] (32x4)}}$ | 0.316          | 0.391                                                        | SlowI | Fast [9] (32x4) | 0.484 |
| SlowFast + $STAN$                                             | 0.326          | 0.396                                                        | Slow  | Fast + STAN     | 0.531 |
| Chara                                                         | ues-⊑yu        | 2% absolute impro<br>1st-person test;<br>1st-person training |       | MEVA            |       |

# Summary of P1

- P1. Action Analysis
  - C2. Efficient Object Detection and Tracking
  - C3. Weakly-Supervised Action Event Recognition
  - C4. Viewpoint Invariant Representation Learning
- Summary & Contributions
  - We have presented an efficient perception system to get object tracks
  - We have tackled the problem of the lack of training data
  - We have proposed a method to learn viewpoint invariant representation
    - Better accuracy with minimal computation overhead

# Focuses of This Presentation

| P1. Action Analysis                                 | P2. Trajectory Prediction with Scene Semantics     | P3. Analysis of Actions and<br>Trajectory Prediction                                            |
|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Efficient Object Detection and<br>Tracking (C2)     | Multi-modal Future Trajectory<br>Prediction (C5)   | Joint Action and Trajectory<br>Prediction (C7)                                                  |
| Weakly-supervised Learning (C3)                     |                                                    |                                                                                                 |
| Viewpoint-Invariant<br>Representation Learning (C4) | Simulation-as-Augmentation<br>Robust Learning (C6) | Long-term Trajectory Prediction<br>Using Scene Semantics and<br>Action Representation (C8 & C9) |

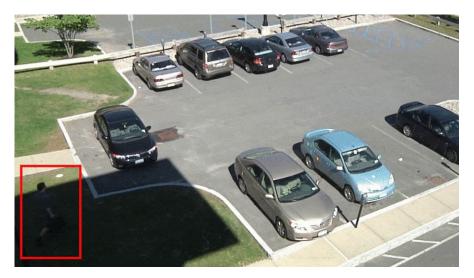
## Roadmap

- P1. Action Analysis
- P2. Trajectory Prediction with Scene Semantics
  - C5. Multi-modal Future Trajectory Prediction
  - C6. Simulation-as-Augmentation Robust Learning
- P3. Analysis of Actions and Trajectory Prediction
- Vision and Future Directions
- Conclusions

# C5. Multi-modal Future Trajectory Prediction

#### • Motivation

- The future of pedestrian can be uncertain
- As shown in this example, the person is likely to walk in multiple directions.

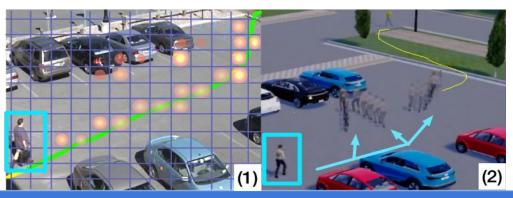


# The Forking Paths Dataset

In real-world videos, only one possible trajectory is available for the same  $A \searrow A^{\otimes}$  scenario.

In order to provide a quantitative evaluation of multi-future trajectory prediction, we create a trajectory dataset using a realistic simulation environment, where the agents are controlled by human annotators, to create multiple semantically

plausible future paths.



# The Forking Paths Dataset

- 1. Scenario re-creation (~15 seconds snippet)
- 2. Scenario editing
- 3. Human annotation

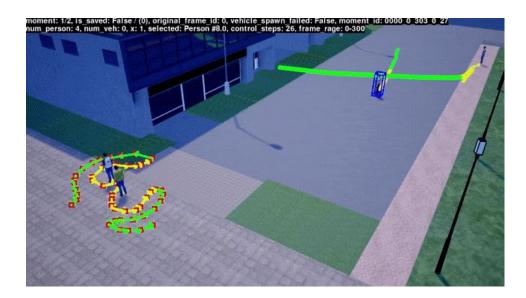
#### Scenario re-creation

- 1. Static scene reconstruction (manually through Unreal Engine 4 editor)
- 2. Dynamic agents (person, vehicle) reconstruction (automatically with given homography matrices)
  - a. Trajectories are converted to CARLA agent control commands



# **Scenario Editing**

- We build a GUI for scenario editing
  - Efficiently examine, add, delete person/vehicle trajectories
  - Decide which agents are plausible "multi-future" agents and their destinations



#### **Human Annotation**

 10 annotators control the agent to reach destinations within 15 seconds and without collisions





# The Forking Paths Dataset - Multi-Future Trajectory Visualization

## Single View Demonstration - Dataset

Red bounding box : Human-controlled agent



# **Single View Demonstration - Dataset**

Yellow trajectory: Agent past trajectory during observation Green trajectories: Agent future trajectories from different human annotators

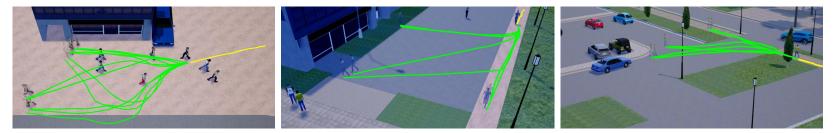


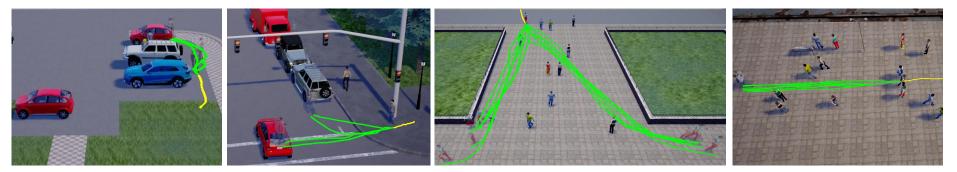
P1. Trajectory Prediction with Scene Semantics Action Analysis - C5. Multi-modal Future Trajectory Prediction



## **Single View Demonstration - Dataset**

We have collected multi-future trajectories from 7 scenes.





#### Single View Demonstration - Vehicle Scene

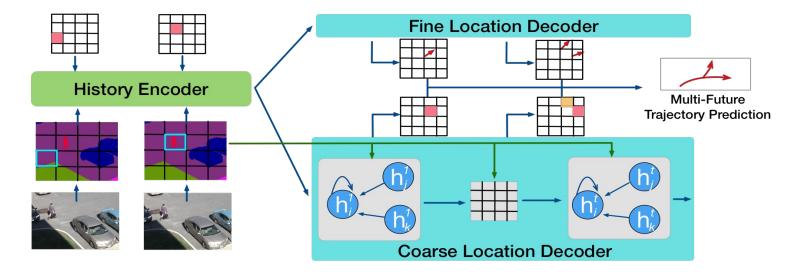
Red bounding box : Human-controlled agent



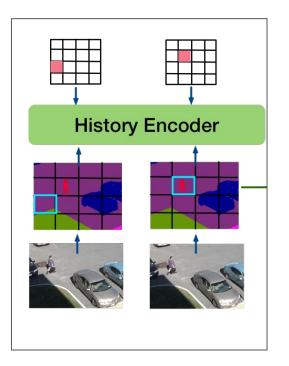
P1. Trajectory Prediction with Scene Semantics Action Analysis - C5. Multi-modal Future Trajectory Prediction

## The Multiverse Model

We propose multi-decoder framework that predicts both coarse and fine locations of the person using scene semantic segmentation features.



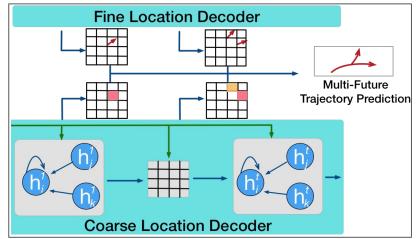
# **Our Model - Encoder**



- Divide the scene into grids
- Multi-level History Encoder (1... T)
  - Pretrained scene semantic segmentation features
  - Kernel=3 convolution masked based on the person's location
  - Input into a Convolutional LSTM (tf.contrib.rnn.ConvLSTMCell)

# **Our Model - Decoder**

- Multi-level Decoder (T+1 ... T<sub>pred</sub>)
  - Two levels
    - Coarse Location Decoder
    - Fine Location Decoder
  - ConvLSTM
  - At each timestep, we use graph convolution to refine the hidden states
    - Edge weights: based on neighboring scene semantics and the hidden states
  - During inferencing, use beam search for the coarse location decoder to get multiple future
  - Combining two-level outputs to get final trajectory predictions



#### **Experiments - Evaluation Metrics**

Minimum Average/Final Displacement Error Given K Predictions (Geometric)

$$\min ADE_{K} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{J} \min_{k=1}^{K} \sum_{t=h+1}^{T} ||Y_{t}^{ij} - \hat{Y}_{t}^{ik}||_{2}}{N \times (T-h) \times J}$$

- minADE<sub>20</sub>: Minimum average error given 20 model predictions
  - 20 model predictions are compared to the ground truth at test time, and only the lowest error ones are selected to count

# **Experiment - Multi-Future Trajectory Prediction**

Our model outperforms others on the proposed dataset for multi-future trajectory prediction. We repeat all experiments (except "linear") 5 times.

| Method               | Input Types         | minADE <sub>20</sub> |                   | minFDE <sub>20</sub> |                          |
|----------------------|---------------------|----------------------|-------------------|----------------------|--------------------------|
| Wiethou              | Input Types         | 45-degree            | top-down          | 45-degree            | top-down                 |
| Linear               | Traj.               | 213.2                | 197.6             | 403.2                | 372.9                    |
| LSTM                 | Traj.               | $201.0 \pm 2.2$      | $183.7 \pm 2.1$   | $381.5 \pm 3.2$      | $355.0 \pm 3.6$          |
| Social-LSTM [1]      | Traj.               | $197.5 \pm 2.5$      | $180.4 \pm 1.0$   | $377.0 \pm 3.6$      | $350.3 \pm 2.3$          |
| Social-GAN (PV) [14] | Traj.               | $191.2 \pm 5.4$      | $176.5 \pm 5.2$   | $351.9 \pm 11.4$     | $335.0 \pm 9.4$          |
| Social-GAN (V) [14]  | Traj.               | $187.1 \pm 4.7$      | 172.7 ±3.9        | $342.1 \pm 10.2$     | $326.7 \pm 7.7$          |
| Next [27]            | Traj.+Bbox+RGB+Seg. | $186.6 \pm 2.7$      | $166.9 \pm 2.2$   | $360.0 \pm 7.2$      | $326.6 \pm 5.0$          |
| Ours                 | Traj.+Seg.          | <b>168.9</b> ±2.1    | <b>157.7</b> ±2.5 | <b>333.8</b> ±3.7    | $\textbf{316.5} \pm 3.4$ |

Numbers are displacement errors. Lower the better.

# **Experiment - Multi-Future Trajectory Prediction**

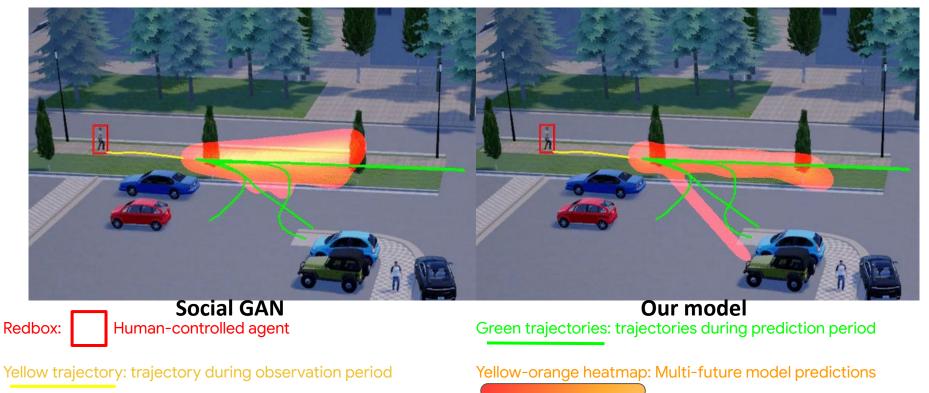
Our model outperforms others on the proposed dataset for multi-future trajectory prediction. We repeat all experiments (except "linear") 5 times.

|                      |                     |                                 | 10%               | less average e    | rrors than        |
|----------------------|---------------------|---------------------------------|-------------------|-------------------|-------------------|
| Method               | Input Types         | minADE <sub>20</sub> Social-GAN |                   |                   |                   |
| Wethou               | Input Types         | 45-degree                       | top-aown          | +J-degree         | top-down          |
| Linear               | Traj.               | 213.2                           | 197.6             | 403.2             | 372.9             |
| LSTM                 | Traj.               | $201.0 \pm 2.2$                 | $183.7 \pm 2.1$   | $381.5 \pm 3.2$   | $355.0 \pm 3.6$   |
| Social-LSTM [1]      | Traj.               | 197.5 ±2.5                      | $180.4 \pm 1.0$   | $377.0 \pm 3.6$   | 350.3 ±2.3        |
| Social-GAN (PV) [14] | Traj.               | 191.2 ±5 4                      | 176.5 ±5.2        | $351.9 \pm 11.4$  | 335.0 ±9.4        |
| Social-GAN (V) [14]  | Traj.               | 187.1 ±4.7                      | 172.7 ±3.9        | $342.1 \pm 10.2$  | 326.7 ±7.7        |
| Next [27]            | Traj.+Bbox+RGB+Seg. | 186.6 ±2.7                      | $166.9 \pm 2.2$   | $360.0 \pm 7.2$   | $326.6 \pm 5.0$   |
| Ours                 | Traj.+Seg.          | <b>168.9</b> ±2.1               | <b>157.7</b> ±2.5 | <b>333.8</b> ±3.7 | <b>316.5</b> ±3.4 |

Numbers are displacement errors. Lower the better.

P1. Trajectory Prediction with Scene Semantics Action Analysis - C5. Multi-modal Future Trajectory Prediction

#### **Qualitative Comparison**



P1. Trajectory Prediction with Scene Semantics Action Analysis - C5. Multi-modal Future Trajectory Prediction

#### C5. Multi-modal Future Trajectory Prediction - Contributions

- Introduced the first dataset that allows us to compare models in a quantitative way in terms of their ability to predict multiple plausible futures.
- Proposed a new effective model for multi-future trajectory prediction.
- Established a new state-of-the-art result on the challenging VIRAT/ActEV benchmark, and compared various methods on our multi-future trajectory prediction datasets.

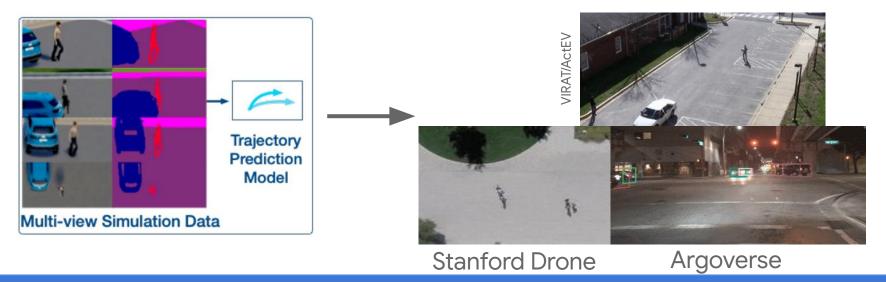
## Roadmap

- P1. Action Analysis
- P2. Trajectory Prediction with Scene Semantics
  - C5. Multi-modal Future Trajectory Prediction
  - C6. Simulation-as-Augmentation Robust Learning
- P3. Analysis of Actions and Trajectory Prediction
- Vision and Future Directions
- Conclusions

#### C6. Learning from 3D Simulation for Trajectory Prediction

In this chapter, we study the problem of trajectory prediction in unseen cameras.

We propose a method, SimAug, to train robust models using simulation data that could generalize to unseen camera viewpoints and scenes (see below).



From Recognition to Prediction: Analysis of Human Action and Trajectory Prediction in Video

# Summary of P2

- P2. Trajectory Prediction with Scene Semantics
  - C5. Multi-modal Future Trajectory Prediction
  - C6. Simulation-as-Augmentation Robust Learning
- Summary & Contributions
  - In this part, we study trajectory prediction models with scene semantic cues
  - We study multimodal future prediction and propose the first manually-annotated quantitative benchmark
  - We also develop a robust learning method for better generalization of prediction model using 3D simulation

# Focuses of This Presentation

| P1. Action Analysis                                 | P2. Trajectory Prediction with Scene Semantics     | P3. Analysis of Actions and<br>Trajectory Prediction                                            |
|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Efficient Object Detection and Tracking (C2)        | Multi-modal Future Trajectory<br>Prediction (C5)   | Joint Action and Trajectory<br>Prediction (C7)                                                  |
| Weakly-supervised Learning (C3)                     |                                                    |                                                                                                 |
| Viewpoint-Invariant<br>Representation Learning (C4) | Simulation-as-Augmentation<br>Robust Learning (C6) | Long-term Trajectory Prediction<br>Using Scene Semantics and<br>Action Representation (C8 & C9) |

From Recognition to Prediction: Analysis of Human Action and Trajectory Prediction in Video

## Roadmap

- P1. Action Analysis
- P2. Trajectory Prediction with Scene Semantics
- P3. Analysis of Actions and Trajectory Prediction
  - C7. Joint Action and Trajectory Prediction
  - C8 & C9. Long-term Trajectory Prediction Using Scene Semantics and Action Representation
- Vision and Future Directions
- Conclusions

# C7. Joint Action and Trajectory Prediction

In this chapter, our goal is to jointly predict a person's future trajectory and action on common benchmarks (short-term prediction)



P3. Analysis of Actions and Trajectory Prediction - C7. Joint Action and Trajectory Prediction

# Intuition

- People navigate in the scene with a specific purpose in mind.
- People's purpose can be inferred from their appearance, body language as well as nearby environment.



## **Our Model - Next**

- 1. We design a *Person Behavior Module* and *Person Interaction Module* to model the target person as well as their interaction with the scene and other objects.
- 2. We utilize multi-task learning for joint trajectory and action prediction

# Experiments

Setup:

- Predict 4.8 seconds Baselines:
- 1. Linear Regressor
- 2. LSTM
- 3. Social LSTM
- 4. Social GAN
- 5. Social GAN + Scene (SoPhie)

#### Metrics:

- Single Future: minADE<sub>1</sub> / minFDE<sub>1</sub>
- Multi-Future: minADE<sub>20</sub> / minFDE<sub>20</sub>

|              | Method            | AVG         |
|--------------|-------------------|-------------|
| Future       | Linear            | 0.79 / 1.59 |
| Fu           | LSTM              | 0.70 / 1.52 |
| gle          | Social LSTM       | 0.72 / 1.54 |
| Single       | Ours-single-model | 0.52 / 1.14 |
| e            | Social GAN (P)    | 0.58 / 1.18 |
| utu          | Social GAN (PV)   | 0.61 / 1.21 |
| Ē            | SoPhie            | 0.54 / 1.15 |
| Multi-Future | Ours-20           | 0.46 / 1.00 |

Table 2. ETH & UCY Experiment

Single output is better than SoPhie with 20 outputs

Single Future: only 1

Multi-Future: 20 model

outputs; Find the best one using ground truth

prediction allowed

#### C7. Joint Action and Trajectory Prediction - Contributions

- We have presented the first model that predict human trajectory and future activity simultaneously
- We are one of the early works that utilize rich visual features including person appearance, person keypoints and scene semantics for short-term trajectory prediction
- We achieve SOTA performance on ETH/UCY dataset

## Roadmap

- P1. Action Analysis
- P2. Trajectory Prediction with Scene Semantics
- P3. Analysis of Actions and Trajectory Prediction
  - C7. Joint Action and Trajectory Prediction
  - C8 & C9. Long-term Trajectory Prediction Using Scene Semantics and Action Representation
- Vision and Future Directions
- Conclusions

C8. Long-term Trajectory Prediction Using Scene Semantics and Action Representation

- We propose a new long-term trajectory prediction dataset with multi-viewpoint video data and a new model that incorporates action representations and scene understanding
  - Short-term: predict ~5 seconds (8 time-steps), long-term\*: predict 12 seconds (30 time-steps)
- Why long-term?
  - Short-term future prediction is not enough to ensure safe operations
- Motivation of collecting a new dataset
  - Common trajectory benchmark's (ETH/UCY/SDD) trajectory length is short in general
  - They also lack action annotation and multi-viewpoint video data in **traffic scenes**

\* the "long-term" definition is consistent with recent published work [99, 185, 224]

### • We utilize the MEVA dataset

- Activity annotation is provided without full person/vehicle tracks
- We need to run object tracking across cameras to get them



### • The MEVA-Trajectory Dataset

- Human annotation rejecting wrong global tracks
  - Automatic global track: 2549, annotated down to 864
- Please refer to the thesis write-up for details of dataset collection process

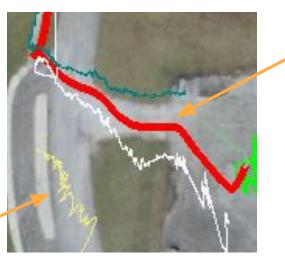




#### Rejected global track (many ID switches)

### • The MEVA-Trajectory Dataset

- Trajectory smoothing with moving averages
- Please refer to the thesis write-up for details of dataset collection process



Smoothed global trajectory

**Rejected local trajectory** 

(Track length 2:50)

- The MEVA-Trajectory Dataset
  - Comparison with common benchmarks

| Datasets            | ETH,UCY [118, 162] | SDD [183] | KITTI [59] | ActEV [158]           | Ours         |  |
|---------------------|--------------------|-----------|------------|-----------------------|--------------|--|
| HD Resolution       | -                  | -         | ~          | partial               | $\checkmark$ |  |
| Multi-View          | -                  | -         | -          | -                     | ~            |  |
| Extended Length     | -                  | -         | ~          | √                     | ~            |  |
| Event/Goal-Driven   | -                  | -         | -          | partial               | ~            |  |
| Traffic Scene       | -                  | partial   | √          | √                     | ~            |  |
| Activity Annotation | -                  | -         | -          | <ul> <li>✓</li> </ul> | ~            |  |

- The MEVA-Trajectory Dataset
  - Comparison with common benchmarks

|                     | ETH, UCY           | ActEV                                      | Ours                                       |
|---------------------|--------------------|--------------------------------------------|--------------------------------------------|
| #Cameras            | 4                  | 5                                          | 10                                         |
| Total Traj. Length  | 4:59:05            | 12:14:44                                   | 15:36:17                                   |
| #Traj.              | 1535               | 1073                                       | 2060 / 864*                                |
| Median Traj. Length | 8.8                | 28.8                                       | 48.3                                       |
| Median #Camera      | 1                  | 1                                          | 2                                          |
| Annotations         | Person coordinates | Person+object<br>bounding boxes,activities | Person+object<br>bounding boxes,activities |

- The MEVA-Trajectory Dataset
  - Visualization of the facility



**Camera view** 

**Top-down view** 

### C9. Long-term Trajectory Prediction with Scene and Action Understanding

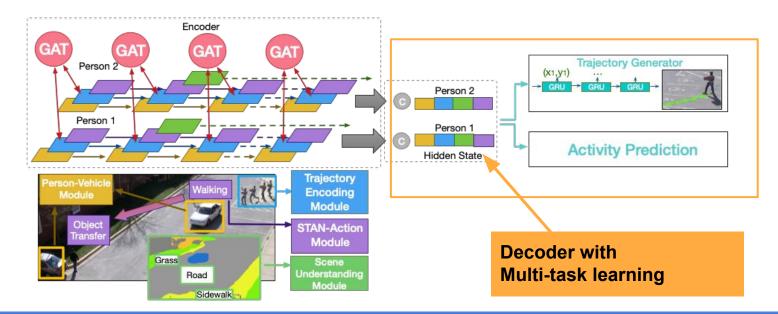
### • Goal

- Expand the common trajectory prediction horizon into long-term setting
  - Predict 12 seconds into the future (previously is ~5 seconds)
- With the aid of graph attention, scene semantic understanding and action analysis representations

79

### The Next-GAT Model

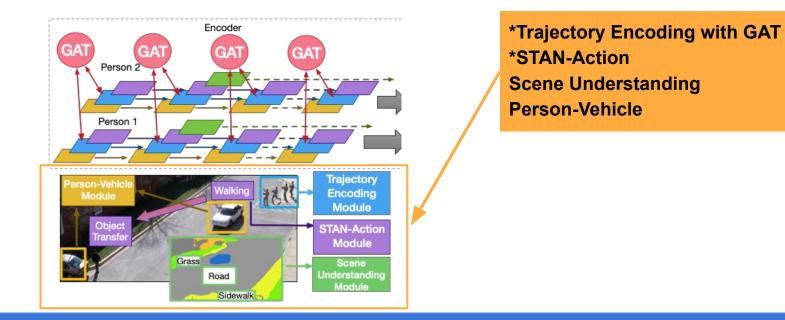
• We utilize enhanced contextual understanding for trajectory and activity prediction



P3. Analysis of Actions and Trajectory Prediction - C9. Long-term Trajectory Prediction with Scene and Action Understanding

### The Next-GAT Model

• We utilize enhanced contextual understanding for trajectory and activity prediction



### **Experiments**

- Previous Work
  - Social-GAN: Representative earlier work on multimodal trajectory prediction
  - ST-GAT: Representative method using graph attention network
  - STGCNN: Recent highly-cited method using convolution network
  - Next (Chapter 7)
- Datasets
  - ActEV and MEVA-Trajectory
- Tasks
  - Short-term and Long-term
  - Single-Future: One model output and use minADE<sub>1</sub> / minFDE<sub>1</sub> as metrics
  - $\circ$  Multi-Future: 20 model output and use minADE<sub>20</sub> / minFDE<sub>20</sub> as metrics

### **Results - ActEV**

- We compare with representative recent methods
  - Significant improvement especially on long-term prediction

|             | Short-term Trajectory Prediction |               |              | Long-term Trajectory Prediction |               |              |  |
|-------------|----------------------------------|---------------|--------------|---------------------------------|---------------|--------------|--|
|             | Act                              | Single-Future | Multi-Future | Act                             | Single-Future | Multi-Future |  |
| NN          | -                                | 1.79/3.12     | -            | -                               | 3.47/6.5      | -            |  |
| Const. Vel. | -                                | 1.17/2.25     | -            | ΗI                              | 2.78/5.74     | -            |  |
| SGAN        | -                                | 1.21/2.25     | 0.88/1.63    | - 1                             | 3.37/6.66     | 2.69/5.29    |  |
| STGAT       | -                                | 1.43/2.75     | 0.88/1.68    | = 1                             | 4.05/7.78     | 2.27/4.63    |  |
| STGCNN      | -                                | 1.48/2.57     | 1.08/1.93    | - 1                             | 3.46/6.51     | 2.78/5.46    |  |
| Next        | 0.192                            | 1.06/2.03     | 0.87/1.79    | 0.211                           | 2.22/4.56     | 1.97/4.05    |  |
| Next-GAT    | 0.236                            | 0.84/1.57     | 0.76/1.42    | 0.267                           | 1.94/4.05     | 1.63/3.36    |  |

**NN: Nearest Neighbor** 

Constant Velocity already good

STGCNN better at single but worse at multi

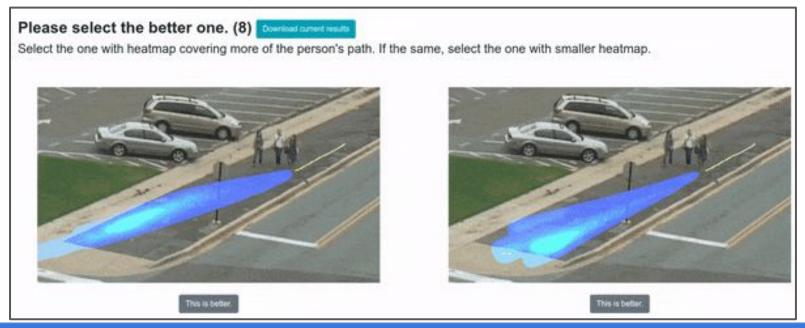
Ours 28% better than STGAT

The numbers are in meters (except mAP)

### **Results - ActEV**

#### • Human interpretation of the error gap

• We conduct a user study with randomized paired example comparison

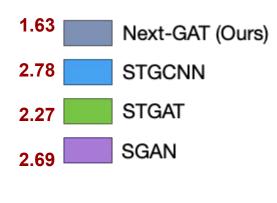


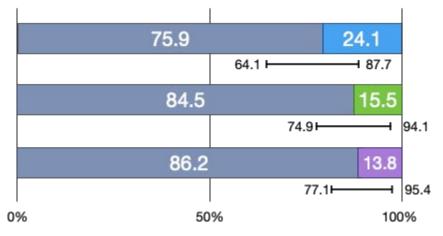
P3. Analysis of Actions and Trajectory Prediction - C9. Long-term Trajectory Prediction with Scene and Action Understanding

### **Results - ActEV**

- Human interpretation of the error gap
  - We conduct a user study

#### ADE







SGAN

The second se



STGAT

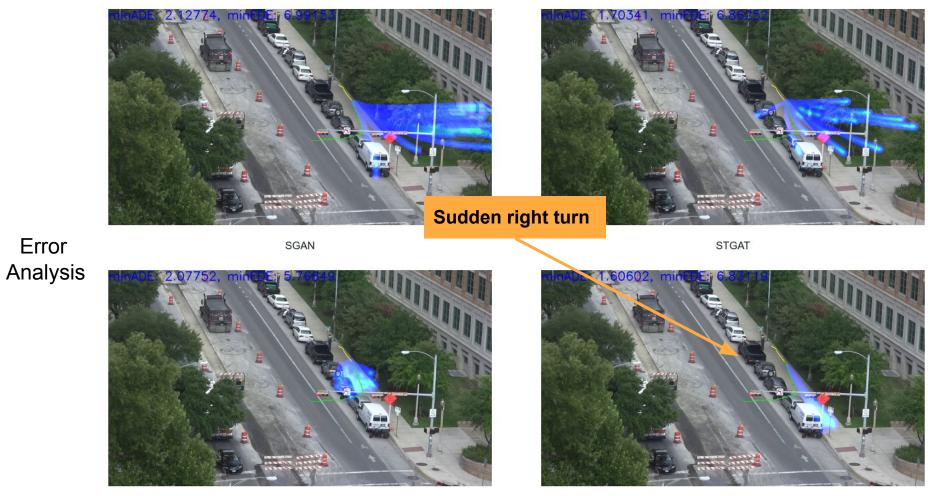
#### Qualitative Analysis





STGCNN

P3. Analysis of Actions and Trajectory Prediction - C9. Long-term Trajectory Prediction with Scene and Action Understanding



STGCNN

Ours

P3. Analysis of Actions and Trajectory Prediction - C9. Long-term Trajectory Prediction with Scene and Action Understanding

# **Results - MEVA-Trajectory**

• We compare with representative recent methods

• Significant improvement especially on long-term prediction

| 5                                |               |                                                                                                                                                                                                                     | 2                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                              |
|----------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Short-term Trajectory Prediction |               |                                                                                                                                                                                                                     | long                                                                                                                             | -term Trajectory                                                                                                                                                                                                                                                                                                                                                                                                 | Ours' single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                              |
| Act                              | Single-Future | Multi-Future                                                                                                                                                                                                        | Act                                                                                                                              | Single-Future                                                                                                                                                                                                                                                                                                                                                                                                    | Multi-Future                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | output is better                                                                                                                                                                                                                                                             |
| - 1                              | 7.32/13.54    | - 1                                                                                                                                                                                                                 | -                                                                                                                                | 15.29/30.00                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | than baselines' 20                                                                                                                                                                                                                                                           |
| = 1                              | 2.76/5.76     | <b>5</b> 1                                                                                                                                                                                                          | -                                                                                                                                | 8.35/17.89                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | outputs                                                                                                                                                                                                                                                                      |
| - 1                              | 3.41/7.21     | 1.92/4.04                                                                                                                                                                                                           | -                                                                                                                                | 8.77/18.11                                                                                                                                                                                                                                                                                                                                                                                                       | 7.24/14.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| - 1                              | 5.05/10.43    | 2.00/4.15                                                                                                                                                                                                           | 2                                                                                                                                | 14.75/29.51                                                                                                                                                                                                                                                                                                                                                                                                      | 7.71/15.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| -                                | 4.79/8.56     | 3.36/6.33                                                                                                                                                                                                           | -                                                                                                                                | 14.60/27.42                                                                                                                                                                                                                                                                                                                                                                                                      | 11.54/22.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Action prediction                                                                                                                                                                                                                                                            |
| 0.257                            | 2.14/5.04     | 1.95/4.55                                                                                                                                                                                                           | 0.176                                                                                                                            | 7.62/18.20                                                                                                                                                                                                                                                                                                                                                                                                       | 5.98/16.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | is significantly                                                                                                                                                                                                                                                             |
| 0.328                            | 1.91/4.33     | 1.63/3.75                                                                                                                                                                                                           | 0.299                                                                                                                            | 6.51/14.67                                                                                                                                                                                                                                                                                                                                                                                                       | 5.60/12.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | better                                                                                                                                                                                                                                                                       |
|                                  | Act 0.257     | Act         Single-Future           -         7.32/13.54           -         2.76/5.76           -         3.41/7.21           -         5.05/10.43           -         4.79/8.56           0.257         2.14/5.04 | ActSingle-FutureMulti-Future-7.32/13.542.76/5.763.41/7.211.92/4.04-5.05/10.432.00/4.15-4.79/8.563.36/6.330.2572.14/5.041.95/4.55 | Act         Single-Future         Multi-Future         Act           -         7.32/13.54         -         -           -         2.76/5.76         -         -           -         3.41/7.21         1.92/4.04         -           -         5.05/10.43         2.00/4.15         -           -         4.79/8.56         3.36/6.33         -           0.257         2.14/5.04         1.95/4.55         0.176 | Act         Single-Future         Multi-Future         Act         Single-Future           -         7.32/13.54         -         -         15.29/30.00           -         2.76/5.76         -         -         8.35/17.89           -         3.41/7.21         1.92/4.04         -         8.77/18.11           -         5.05/10.43         2.00/4.15         -         14.75/29.51           -         4.79/8.56         3.36/6.33         -         14.60/27.42           0.257         2.14/5.04         1.95/4.55         0.176         7.62/18.20 | ActSingle-FutureMulti-FutureActSingle-FutureMulti-Future-7.32/13.5415.29/30.002.76/5.768.35/17.893.41/7.211.92/4.04-8.77/18.117.24/14.98-5.05/10.432.00/4.15-14.75/29.517.71/15.68-4.79/8.563.36/6.33-14.60/27.4211.54/22.630.2572.14/5.041.95/4.550.1767.62/18.206.98/16.60 |

The numbers are in feet (except mAP)

**STGCNN** a lot

worse than ActEV

# **Results - MEVA-Trajectory**

- Ablation study
  - Single Trajectory

|                  | long-ter | m Trajectory | Prediction |                                |
|------------------|----------|--------------|------------|--------------------------------|
|                  | Activity | minADE_1     | minFDE_1   | STAN-Action                    |
| Next-GAT         | 0.299    | 6.51         | 14.67      | improves activity prediction   |
| Next             | 0.176    | 7.62         | 18.2       | Seene comentie                 |
| Next-GAT-ResNet  | 0.253    | 7.02         | 15.55      | Scene semantic<br>segmentation |
| Next-GAT-noScene | 0.280    | 6.88         | 15.78      | helps a bit                    |
| GRU-EncodeDecode | -        | 9.69         | 20.97      | Visual feature is              |
|                  | -        |              |            | visual leature is              |

**Graph attention is** 

important

crucial

### **Results - MEVA-Trajectory**

#### • Qualitative analysis



SGAN





STGAT







Video frames (two cameras)

#### **Predicted correct turn**

# Summary of P3

- P3. Analysis of Actions and Trajectory Prediction
  - C7. Joint Action and Trajectory Prediction
  - C8 & C9. Long-term Trajectory Prediction using scene semantics and action representation
- Summary & Contributions
  - In this part, we focus on joint modeling methods and develop a trajectory and action prediction model that takes into account contextual cues of both the target agent's behavior cues and scene semantics
  - We propose a new multi-view long-term trajectory prediction benchmark in traffic scenes, MEVA-Trajectory
  - We achieve state-of-the-art performance on MEVA-Trajectory

### Roadmap

- P1. Action Analysis
- P2. Trajectory Prediction with Scene Semantics
- P3. Analysis of Actions and Trajectory Prediction
- Vision and Future Directions
- Conclusions

- Applications (Short-term Directions)
  - First-person view prediction
  - Long-tail action/trajectory prediction
    - Accidents, disaster events
  - Computation-accuracy trade-off
  - Trajectory prediction in sports
  - Crowd dynamics estimation for public safety monitoring

- Crowd Dynamics
   Estimation for Public
   Safety Monitoring
  - Crowd counting for the Washington Post leads to a front-page news
  - Future prediction of crowd dynamics could avoid mass casualty events



- Model & Algorithm (Long-term Directions)
  - Modeling different populations
  - Unifying vehicle trajectory prediction and pedestrian prediction
  - Common sense reasoning for long-term future prediction

- Common sense reasoning for long-term future prediction
  - A person with a luggage is likely to travel -> bus station is for travelers



From Recognition to Prediction: Analysis of Human Action and Trajectory Prediction in Video

### Conclusion

- Key Research Question
  - How to build a robust trajectory prediction system with enhanced semantic context understanding for urban traffic scenes
- Tackled Three Tasks
  - P1. Action Analysis
  - P2. Trajectory Prediction with Scene Semantics
  - P3. Analysis of Actions and Trajectory Prediction
- Proposed Two New Datasets
  - The Forking Path Dataset: the first multimodal human-annotated benchmark
  - The MEVA-Trajectory Dataset: a multi-viewpoint long-term trajectory benchmark

### Academic Impact

- Chapter 7 of our work has received 140+ citations and it is one of the top-cited paper at CVPR'19 on this topic. Notably, researchers have extended our work on:
  - Multi-task learning for trajectory prediction [15, 174]
  - Action prediction [28, 108]
  - Ego-centric view trajectory prediction [19, 165, 172]
  - Efficiency [231, 239]
  - Graph models [28, 211, 251]
- Chapter 5's new dataset has been used by [144, 169] and more
- Most of our research work has been open-sourced and our Github repositories have a total of 800+ stars and 300+ forks as of June 2021.

# Thank you

- Projects: https://www.cs.cmu.edu/~junweil/#projects
- Code: <u>https://github.com/JunweiLiang</u>
- Youtube: <a href="https://www.youtube.com/channel/UC-z7ZWp8Rbu2xhxnbAL\_bRQ">https://www.youtube.com/channel/UC-z7ZWp8Rbu2xhxnbAL\_bRQ</a>
- 知乎: <u>https://www.zhihu.com/people/junwei-liang-50</u>
- Blog: <a href="https://medium.com/@junweil">https://medium.com/@junweil</a>
- Email: junweil@cs.cmu.edu
- Thanks to:
  - o Alex, Lu, Kris, Alan
  - Sponsors: NSF, NIST, IARPA, Yahoo!, Google Cloud, Baidu Scholarship
  - Admin: Stacey Young
  - Mentors & Collaborators:
    - Liangliang Cao, Xuehan Xiong, Ting Yu, Kevin Murphy, Juan Carlos Niebles, Fei-Fei Li, Jia Li

### My Journey So Far...



### Reference

Liang, Junwei, et al. "SimAug: Learning Robust Representations from Simulation for Trajectory Prediction." ECCV 2020.

Liang, Junwei, et al. "The garden of forking paths: Towards multi-future trajectory prediction." CVPR 2020.

Liang, Junwei, et al. "Peeking into the future: Predicting future person activities and locations in videos." CVPR 2019.

Liang, Junwei, et al. "Leveraging Multi-modal Prior Knowledge for Large-scale Concept Learning in Noisy Web Data." ICMR 2017

Liang, Junwei, et al. "Focal visual-text attention for memex question answering." TPAMI 2019.

Liang, Junwei, et al. "Focal visual-text attention for visual question answering." CVPR 2018.

Liang, Junwei, et al. "Learning to Detect Concepts from Webly-Labeled Video Data." IJCAI 2016.

Liang, Junwei, et al. "Webly-supervised learning of multimodal video detectors." AAAI 2017.